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Abstract-

Small-fiber sensory neuropathy with neuropathic pain had been a diagnostic challenge for neurologists. We
and several groups have developed skin biopsy with quantitation of intraepidermal nerve fiber (IENF) den-
sity as a diagnostic approach. In the skin with small-fiber sensory neuropathy, there are pathological hall-
marks: reduced IENF density with degeneration of subepidermal nerve plexuses and dermal nerves. Skin
denervation is a major presentation of diabetic neuropathy and inflammatory neuropathies including
Guillain-Barr? syndrome and chronic inflammatory demyelinating polyneuropathy. The skin biopsy
approach also provides an opportunity to examine dermal vasculature and inflammatory vasculopathy is
demonstrated in vasculitic neuropathy, systemic lupus erythematosus, and eosinophilia-associated neuropa-
thy. In addition to neuropahtologic evidence, the functional consequences of cutaneous nerve degeneration
can be assessed with quantitative sensory testing (QST), contact heat evoked potential (CHEP), and func-
tional magnetic resonance imaging (fMRI). One major etiology of small-fiber sensory neuropathy is famil-
ial amyloid polyneuropathy caused by mutations of transthyretin (TTR). We recently conducted studies on a
large cohort of unique TTR mutation on Ala97Ser in Taiwan. These patients had significant skin denerva-
tion in addition to motor and autonomic neuropathy. Taken together, the skin biopsy with quantitation of
IENF density provides diagnostic utility for small-fiber sensory neuropathy and the combination of psy-
chophysical, physiological, and neuroimaging examinations offer comprehensive assessments for patients
with neuropathic pain due o cutaneous nerve degeneration.
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INTRODUCTION

Neuropathic pain is a major symptom after nerve
injury, which can be caused by degeneration of large-

diameter sensory nerves (large fibers) or small-diameter
sensory nerves (small fibers). Sensory nerves are the
cytoplasmic extensions of dorsal root ganglion (DRG)
neurons and are dichotomized into two classes: large-
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diameter (large DRG neurons and large fibers) and
small-diameter (small DRG neurons and small fibers)
(Fig 1)". Large sensory nerves terminate in the muscles,
joints, and tendons and are responsible for propriocep-
tive sensations. Small sensory nerves terminate in the
skin and visceral organs and transmit thermonociceptive
stimuli, which form important protective sensations.
Although sensory symptoms due to either type of nerve
degeneration might be different in some patients, there
are not distinct features to differentiate both. Practically,
large fiber neuropathy can be examined by nerve con-
duction studies. Small-fiber sensory neuropathy, howev-
er, traditionally had depended on subjective description
of symptoms by patients. Because small-diameter senso-
ry nerves terminate in the skin, several groups including
ours have developed skin biopsy with quantification of
intraepidermal nerve fibers (IENF) density as a diagnos-
tic approach for small-fiber sensory neuropathy””. There
are two major approaches to quantitatively assess skin
innervation, i.e. immunofluorescence with confocal
microscopy and immunohistochemisty with convention-
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Figure 1. Structural organization of peripheral sensory nerves.
Peripheral sensory nerves consist of (1) propriocep-
tive nerves from large-diameter sensory neurons of
dorsal root ganglia which terminate in skeletal mus-
cles, tendons, and joints and (2) nociceptive and
thermal nerves from small-diameter sensory neurons
of dorsal root ganglia which terminate in the skin.

have formed a task force to set up guidelines for skin
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biopsies, the interpretations, and applications®.

SMALL-FIBER NEUROPATHY IN
DIABETES

Small-fiber neuropathy is an important component
of peripheral neuropathies in diabetes. Skin denervation
is a major manifestation of neuropathy in type 2 diabetes
@, In patients with stocking-glove sensory symptoms,
81.6% of them had reduced IENF densities and the
reduction was correlated with diabetic duration. In con-
trast, only 50% of these patients had abnormal results on
conventional nerve conduction studies, indicating that
small-fiber sensory neuropathy is far more prevalent
than large-fiber sensory neuropathy (Fig 2)“. In type 1
diabetes, there was also significant reduction of intraepi-
dermal nerves"”. Skin biopsy offers the potential for
repeated examinations of skin innervation to understand
cutaneous nerve regeneration. With this approach, it is
clear that cutaneous nerve regeneration is impaired in

diabetic patients "',

SKIN DENERVATION IN
INFLAMMATORY NEUROPATHIES

An important extension is the application of skin
biopsy to explore small-fiber neuropathy in inflammato-
ry neuropathies, in particular, Guillain-Barré syndrome
(GBS)"?” and chronic inflammatory demyelinating
polyneuropathy (CIDP) “*. Traditionally, GBS is consid-
ered a large-fiber neuropathy. However, the presence of
neuropathic pain and dysautonomia in GBS patients rais-
es the possibility of small-fiber sensory and autonomic
neuropathy. In the demyelinating form of GBS patients,
IENF densities were reduced compared with age- and
gender-matched control subjects. Among these patients,
55% of them had reduced epidermal innervation with
pathological evidence of active nerve degeneration in the
dermis, such as fragmentation of subepidermal nerve
plexuses and dermal nerves. Additionally, reduced IENF
density was associated with an elevated warm threshold,
ventilatory distress, and dysautonomia. In GBS, IENF
densities were negatively correlated with disability grade
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Figure 2. Skin innervation in type 2 diabetic neuropathy and its diagnostic value compared with quantitative sensory testing and

nerve conduction studies.

Skin tissues from control (A) and diabetic (B) subjects were immunostained with protein gene product 9.5 (PGP 9.5). The
boundary between the epidermis (epi) and the dermis (derm) is marked by a line.

(A) In the skin of a normal subject, PGP 9.5 (+) nerves appear in the epidermis and dermis. Typical epidermal nerves
(arrows) arise from the subepidermal nerve plexuses (snp).

(B) In the skin of a diabetic patient, the epidermis is completely denervated. The staining of the subepidermal nerve
plexus (snp) has become faint, and the number of dermal nerve fascicles is markedly reduced. (bar = 80 ?m).

(C) The intraepidermal nerve fibre density (IENF density) of the leg in diabetic patients (filled squares) is markedly reduced
compared with that in age- and gender-matched control subjects (open circles) (P < 0.0001) (bar = mean value).

(D) The graph shows the proportion of diabetic patients with abnormal results on the intraepidermal nerve density of the
leg (IENF); warm threshold at the foot dorsum (Warm); cold threshold at the foot dorsum (Cold); vibratory threshold (Vib);
and nerve conduction studies on motor nerves (Motor) and sensory nerves (Sensory). The latter include sural (Sural), per-
oneal (Per) and median (Med) nerves.

This Figure is reproduced and modified from Shun et al, 2004 ©.

and patients with skin denervation tended to have a
slower recovery than those with normal skin innervation.
Similarly, IENF densities of patients with CIDP were
lower than those of controls and skin denervation was
associated with autonomic symptoms and elevation of
thermal thresholds. The mechanisms of cutaneous nerve
degeneration in GBS and CIDP remain obscured.
Nevertheless, the presence of small-fiber neuropathy in

inflammatory neuropathies indicates that these inflam-
matory neuropathies should be considered as a pan-neu-
ropathy. In patients with paraproteinemic neuropathy, the
IENF densities was reduced and the antibody against
myelin-associated glycoprotein was deposited in the der-
mal nerves which provided a foundation of the mecha-
nisms of paraprotein-induced sensory neuropathy “*'.

In addition to demonstrate skin denervation, the der-
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mal vessels are also targets of vasculitis and we have
applied this approach to examine dermal microvasculitis
in various types of inflammatory and autoimmune dis-
eases, which are often associated with undiagnosed neu-
ropathies. This new approach has important implications
because traditionally vasculitis could only be diagnosed
with nerve and muscle biopsies """, We first demonstrat-
ed dermal microvasculitis in patients with vasculitis syn-
drome *”. In addition to vascular injury, there was
perivascular inflammation of macrophage and T cells,
indicating the immune-mediated nature of nerve injury
@9 All these patients also exhibited skin denervation,
suggesting the association of both conditions. We then
demonstrated that dermal vasculitis was associated with
skin denervation in systemic lupus erythematosus (SLE),
i.e. the higher the degree of vasculitis, the lower the
IENF density *”. IENF densities were associated with
clinical deficits. These include the negative correlation
with the SLE disease activity index and cumulative
episodes of lupus flare-up within 2 years before the skin
biopsy. In addition to being present in the patients with
sensory neuropathy, skin denervation also existed in the
patients with neuropsychiatric syndrome involving the
central nervous system. In neuropathy due to eosinophil-
ia and Churg-Strauss syndrome %, there is also signifi-
cant skin denervation and IENF density is negatively
correlated with the disability grade and associated with
cutaneous vasculitis. These studies raise the possibility
that skin biopsy may provide another approach to diag-

nose vasculitis *?.

FUNCTIONAL EXAMINATIONS OF
THERMONOCICEPTIVE NERVES

Functional assessments provide another domain of
small-fiber painful neuropathy, including psychophysi-
cal, neurophysiological, and functional imaging
approaches. Among these, quantitative sensory testing
(QST) has been the earliest examination to measure
thresholds. QST is a psychophysic approach and there
are two algorithms to measure thermal thresholds, i.e.
limits and level ®. The method of limits directly mea-
sures the thermal thresholds and therefore might be
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affected by reaction time. This algorithm is highly corre-
lated with the method of level and is less time-consum-
ing compared with the method of level. Briefly, the sen-
sory analyzer delivers a stimulus from a baseline temper-
ature of 32.0 °C with an initial increment (for warm
stimuli) or decrement (for cold stimuli) of 1.0 °C. The
temperature of the next stimulus is either increased or
decreased by a fixed ratio (2:1) according to the
response of the subject, i.e., whether or not the subject
had perceived the thermal stimulus. The mean intensity
of the final two thermal stimuli is the thermal threshold
temperature, and is expressed as the warm threshold or
the cold threshold temperatures (°C), respectively. QST
is noninvasive and can be repeated for following up the
progression of the disease or assessing the effects of new
therapies. QST is a functional assessment of the entire
thermonociceptive pathway from nerve terminals,
through peripheral nerves, DRG, and spinal cord to the
cerebrum. There are, however, several drawbacks for
using QST. For example, QST is unable to define the site
of nerve injury and QST could be influenced by emo-
tional and environmental effects. QST could be used for
a large-scale screening of small-fiber neuropathy. For
example, thermal thresholds are elevated in diabetic
patients and the elevation of thermal thresholds is corre-
lated with diabetic control parameters, particularly gly-
cated hemoglobin, HbA1C®.

Heat or pain-evoked potentials studies provide neu-
rophysiological evidence of small-fiber painful neuropa-
thy. Traditionally, laser-evoked potential has been a
research tool for assessing thermonociceptive pathway
@9 Laser-evoked potential was reduced in patients with
painful neuropathy. Painful signals stimulated by electric
currents through delicate epidermal electrodes demon-
strate pain-evoked potential. The amplitude was reduced
and correlated with IENF density in HIV-induced senso-
ry neuropathy ®”. The above three types of pain- or heat-
evoked potentials all activate A J fibers. Contact heat
evoked potential (CHEP) appears to have additional
advantages ***”. Together with the ability to adjust the
heat intensity and stimulation paradigms, C-fiber evoked
potentials can be recorded. A punctuate stimulation site
for inducing laser is small and may not simulate the real
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experience of pain or heat. In contrast, the probe for con-
tact heat stimulation is larger than that for laser- or pain-
evoked potential stimulator, which could mimic real-life
heat perception. We have showed that CHEP amplitude
was linearly correlated with IENF density, providing a
link between the structure and functions of small-diame-
ter sensory fibers “”.

In addition to exploring neurophysiologic evidence,
we further investigated the patterns of brain activation to
innocuous and noxious heat stimulations on functional
magnetic resonance imaging (fMRI). Previously, the pre-
vailing thought has been that the areas activated by
innocuous heat were also activated by noxious heat “'**.
We hypothesized that different cerebral areas might be
activated by innocuous heat and noxious heat respective-
ly and adopted a paradigm of 38 °C for innocuous heat
and 44 °C for noxious heat. Our study indicated that
there are unique spatial and temporal patterns of brain
activations on either type of heat stimuli, i.e. distinct
areas activated by innocuous heat and noxious heat and
shared areas activated by both innocuous heat and nox-
ious heat. In particular, the inferior parietal lobule is a

innocuous heat-exclusive area (Table 1)®.

FAMILIAL AMYLOID POLYNEUROPA-
THY DUE TO TRANSTHYRETIN
MUTATIONS

Small-fiber painful neuropathy is a syndrome of dif-
ferent etiologies. These include diabetic and autoim-
mune diseases. Among these causes, familial amyloid
polyneuropathy (FAP) constitutes a unique disease enti-
ty. The most common form of FAP is due to mutations
of transthyretin (TTR). Mutations of TTP have previous-
ly reported in Portugal, Sweden, and Japan. Originally
considered as endemic in certain ethnic groups, it is clear
that neuropathies due to TTR mutations have a world-
wide distribution. TTR mutation of V30M appears the
most common mutation causing FAP “**", In contrast,
A97S compared with other mutations seems to be the
most common mutation of TTR in Taiwanese “**. We
have recently completed a study on a cohort of 19 A97S
patients to characterize this unique neuropathy in Taiwan
) Neuropathy due to A97S TTR is a late-onset global

Table 1. Functional magnetic resonance imaging (fMRI) patterns of brain activations to contact innocuous heat (IH) and noxious

heat (NH) based on the entire section of fMRI scanning

Study Thermal stimulus ~ Temperature (*C) Brain activation
Ramp rate  Site (IH / NH) IH only NH only IH and NH
Tseng et al, 2010 ® 20°C/s foot 38/44 IPL S1, 82, pIC, PMA  MFG, IFG, alC, Cb, SFG,
SMA, Th, ACC, LN, Mb
Moulton et al., 2005 4°C/s foot  41/46.4,47.4 - plC S1, S2, ACC, SMA, IFG
Brooks et al., 2002 © N/A hand 40/ 46-49 -* IC, ACC, S2,Cb, -
MFG, IFG
Becerra et al., 1999 4°C/s hand 41/ 46 - MTG MFG, IC, ACC, PCC, Th, S1,
S2, SMA, PMA, STG, Cb
Davis et al., 1998 " N/A hand 40-43/47.5 - S2 Th, LN, IC

N/A: information not available; * no activation to IH.

ACC, anterior cingulate cortex; Cb, cerebellum; alC, anterior insular cortex; IFG, inferior frontal gyrus; IPL, inferior parietal lobule;

L, left; LN, lentiform nucleus; MFG, middle frontal gyrus; MTG, middle temporal gyrus; PCC, posterior cingulate cortex; plC, pos-

terior insular cortex; PMA, premotor area; R, right; S1, primary somatosensory cortex; S2, secondary somatosensory cortex;

SMA, supplementary motor area; STG, superior temporal gyrus; Th, thalamus.

This Table was reproduced from Tseng et al, 2010,
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neuropathy, i.e. involving motor, sensory, and autonomic
components of peripheral nerves. Reported patients had
onset > 50 years of age and exhibited significant auto-
nomic dysfunction including chronic diarrhea and pos-
tural hypotension. Sensory nerves of large and small-
fiber categories were affected. All patients had skin den-
ervation which was correlated with the elevation of ther-
mal thresholds. This form of neuropathy could be an
under-diagnosed neuropathy in Taiwan and it is manda-
tory to perform genetic screening of A97S in patients
with adult-onset idiopathic motor, sensory, and autonom-
ic neuropathy.

PERSPECTIVES

In conclusion, the skin biopsy with quantitation of
IENF density provides diagnostic utility for small-fiber
sensory neuropathy and the combination of psychophysi-
cal (QST), physiological (CHEP), and neuroimaging
(fMRI) examinations may offer comprehensive assess-
ments for patients with neuropathic pain due to cuta-
neous nerve degeneration. In Taiwan, TTR (A97S)-amy-
loid neuropathy appears a unique neuropathy involving
the motor, sensory, and autonomic components.
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